Added licenses and readmes
This commit is contained in:
parent
abe2a2ce4e
commit
80b7018ba0
|
@ -13,6 +13,8 @@
|
|||
"sstream": "cpp",
|
||||
"streambuf": "cpp",
|
||||
"system_error": "cpp",
|
||||
"stdexcept": "cpp"
|
||||
"stdexcept": "cpp",
|
||||
"iostream": "cpp",
|
||||
"ios": "cpp"
|
||||
}
|
||||
}
|
|
@ -0,0 +1,674 @@
|
|||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 3, 29 June 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The GNU General Public License is a free, copyleft license for
|
||||
software and other kinds of works.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
the GNU General Public License is intended to guarantee your freedom to
|
||||
share and change all versions of a program--to make sure it remains free
|
||||
software for all its users. We, the Free Software Foundation, use the
|
||||
GNU General Public License for most of our software; it applies also to
|
||||
any other work released this way by its authors. You can apply it to
|
||||
your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to prevent others from denying you
|
||||
these rights or asking you to surrender the rights. Therefore, you have
|
||||
certain responsibilities if you distribute copies of the software, or if
|
||||
you modify it: responsibilities to respect the freedom of others.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must pass on to the recipients the same
|
||||
freedoms that you received. You must make sure that they, too, receive
|
||||
or can get the source code. And you must show them these terms so they
|
||||
know their rights.
|
||||
|
||||
Developers that use the GNU GPL protect your rights with two steps:
|
||||
(1) assert copyright on the software, and (2) offer you this License
|
||||
giving you legal permission to copy, distribute and/or modify it.
|
||||
|
||||
For the developers' and authors' protection, the GPL clearly explains
|
||||
that there is no warranty for this free software. For both users' and
|
||||
authors' sake, the GPL requires that modified versions be marked as
|
||||
changed, so that their problems will not be attributed erroneously to
|
||||
authors of previous versions.
|
||||
|
||||
Some devices are designed to deny users access to install or run
|
||||
modified versions of the software inside them, although the manufacturer
|
||||
can do so. This is fundamentally incompatible with the aim of
|
||||
protecting users' freedom to change the software. The systematic
|
||||
pattern of such abuse occurs in the area of products for individuals to
|
||||
use, which is precisely where it is most unacceptable. Therefore, we
|
||||
have designed this version of the GPL to prohibit the practice for those
|
||||
products. If such problems arise substantially in other domains, we
|
||||
stand ready to extend this provision to those domains in future versions
|
||||
of the GPL, as needed to protect the freedom of users.
|
||||
|
||||
Finally, every program is threatened constantly by software patents.
|
||||
States should not allow patents to restrict development and use of
|
||||
software on general-purpose computers, but in those that do, we wish to
|
||||
avoid the special danger that patents applied to a free program could
|
||||
make it effectively proprietary. To prevent this, the GPL assures that
|
||||
patents cannot be used to render the program non-free.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
TERMS AND CONDITIONS
|
||||
|
||||
0. Definitions.
|
||||
|
||||
"This License" refers to version 3 of the GNU General Public License.
|
||||
|
||||
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||
works, such as semiconductor masks.
|
||||
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of an
|
||||
exact copy. The resulting work is called a "modified version" of the
|
||||
earlier work or a work "based on" the earlier work.
|
||||
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user through
|
||||
a computer network, with no transfer of a copy, is not conveying.
|
||||
|
||||
An interactive user interface displays "Appropriate Legal Notices"
|
||||
to the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
1. Source Code.
|
||||
|
||||
The "source code" for a work means the preferred form of the work
|
||||
for making modifications to it. "Object code" means any non-source
|
||||
form of a work.
|
||||
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users
|
||||
can regenerate automatically from other parts of the Corresponding
|
||||
Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that
|
||||
same work.
|
||||
|
||||
2. Basic Permissions.
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not
|
||||
convey, without conditions so long as your license otherwise remains
|
||||
in force. You may convey covered works to others for the sole purpose
|
||||
of having them make modifications exclusively for you, or provide you
|
||||
with facilities for running those works, provided that you comply with
|
||||
the terms of this License in conveying all material for which you do
|
||||
not control copyright. Those thus making or running the covered works
|
||||
for you must do so exclusively on your behalf, under your direction
|
||||
and control, on terms that prohibit them from making any copies of
|
||||
your copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under
|
||||
the conditions stated below. Sublicensing is not allowed; section 10
|
||||
makes it unnecessary.
|
||||
|
||||
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such circumvention
|
||||
is effected by exercising rights under this License with respect to
|
||||
the covered work, and you disclaim any intention to limit operation or
|
||||
modification of the work as a means of enforcing, against the work's
|
||||
users, your or third parties' legal rights to forbid circumvention of
|
||||
technological measures.
|
||||
|
||||
4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these conditions:
|
||||
|
||||
a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
|
||||
b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under section
|
||||
7. This requirement modifies the requirement in section 4 to
|
||||
"keep intact all notices".
|
||||
|
||||
c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
|
||||
d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms
|
||||
of sections 4 and 5, provided that you also convey the
|
||||
machine-readable Corresponding Source under the terms of this License,
|
||||
in one of these ways:
|
||||
|
||||
a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
|
||||
b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the
|
||||
Corresponding Source from a network server at no charge.
|
||||
|
||||
c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
|
||||
d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
|
||||
e) Convey the object code using peer-to-peer transmission, provided
|
||||
you inform other peers where the object code and Corresponding
|
||||
Source of the work are being offered to the general public at no
|
||||
charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal, family,
|
||||
or household purposes, or (2) anything designed or sold for incorporation
|
||||
into a dwelling. In determining whether a product is a consumer product,
|
||||
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||
product received by a particular user, "normally used" refers to a
|
||||
typical or common use of that class of product, regardless of the status
|
||||
of the particular user or of the way in which the particular user
|
||||
actually uses, or expects or is expected to use, the product. A product
|
||||
is a consumer product regardless of whether the product has substantial
|
||||
commercial, industrial or non-consumer uses, unless such uses represent
|
||||
the only significant mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to install
|
||||
and execute modified versions of a covered work in that User Product from
|
||||
a modified version of its Corresponding Source. The information must
|
||||
suffice to ensure that the continued functioning of the modified object
|
||||
code is in no case prevented or interfered with solely because
|
||||
modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or updates
|
||||
for a work that has been modified or installed by the recipient, or for
|
||||
the User Product in which it has been modified or installed. Access to a
|
||||
network may be denied when the modification itself materially and
|
||||
adversely affects the operation of the network or violates the rules and
|
||||
protocols for communication across the network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders of
|
||||
that material) supplement the terms of this License with terms:
|
||||
|
||||
a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
|
||||
b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
|
||||
c) Prohibiting misrepresentation of the origin of that material, or
|
||||
requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
|
||||
d) Limiting the use for publicity purposes of names of licensors or
|
||||
authors of the material; or
|
||||
|
||||
e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
|
||||
f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions of
|
||||
it) with contractual assumptions of liability to the recipient, for
|
||||
any liability that these contractual assumptions directly impose on
|
||||
those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions;
|
||||
the above requirements apply either way.
|
||||
|
||||
8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your
|
||||
license from a particular copyright holder is reinstated (a)
|
||||
provisionally, unless and until the copyright holder explicitly and
|
||||
finally terminates your license, and (b) permanently, if the copyright
|
||||
holder fails to notify you of the violation by some reasonable means
|
||||
prior to 60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or
|
||||
run a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims
|
||||
owned or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within
|
||||
the scope of its coverage, prohibits the exercise of, or is
|
||||
conditioned on the non-exercise of one or more of the rights that are
|
||||
specifically granted under this License. You may not convey a covered
|
||||
work if you are a party to an arrangement with a third party that is
|
||||
in the business of distributing software, under which you make payment
|
||||
to the third party based on the extent of your activity of conveying
|
||||
the work, and under which the third party grants, to any of the
|
||||
parties who would receive the covered work from you, a discriminatory
|
||||
patent license (a) in connection with copies of the covered work
|
||||
conveyed by you (or copies made from those copies), or (b) primarily
|
||||
for and in connection with specific products or compilations that
|
||||
contain the covered work, unless you entered into that arrangement,
|
||||
or that patent license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you may
|
||||
not convey it at all. For example, if you agree to terms that obligate you
|
||||
to collect a royalty for further conveying from those to whom you convey
|
||||
the Program, the only way you could satisfy both those terms and this
|
||||
License would be to refrain entirely from conveying the Program.
|
||||
|
||||
13. Use with the GNU Affero General Public License.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU Affero General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the special requirements of the GNU Affero General Public License,
|
||||
section 13, concerning interaction through a network will apply to the
|
||||
combination as such.
|
||||
|
||||
14. Revised Versions of this License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions of
|
||||
the GNU General Public License from time to time. Such new versions will
|
||||
be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the
|
||||
Program specifies that a certain numbered version of the GNU General
|
||||
Public License "or any later version" applies to it, you have the
|
||||
option of following the terms and conditions either of that numbered
|
||||
version or of any later version published by the Free Software
|
||||
Foundation. If the Program does not specify a version number of the
|
||||
GNU General Public License, you may choose any version ever published
|
||||
by the Free Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future
|
||||
versions of the GNU General Public License can be used, that proxy's
|
||||
public statement of acceptance of a version permanently authorizes you
|
||||
to choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
15. Disclaimer of Warranty.
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||
SUCH DAMAGES.
|
||||
|
||||
17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
state the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the program's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If the program does terminal interaction, make it output a short
|
||||
notice like this when it starts in an interactive mode:
|
||||
|
||||
<program> Copyright (C) <year> <name of author>
|
||||
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||
This is free software, and you are welcome to redistribute it
|
||||
under certain conditions; type `show c' for details.
|
||||
|
||||
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||
parts of the General Public License. Of course, your program's commands
|
||||
might be different; for a GUI interface, you would use an "about box".
|
||||
|
||||
You should also get your employer (if you work as a programmer) or school,
|
||||
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||
For more information on this, and how to apply and follow the GNU GPL, see
|
||||
<https://www.gnu.org/licenses/>.
|
||||
|
||||
The GNU General Public License does not permit incorporating your program
|
||||
into proprietary programs. If your program is a subroutine library, you
|
||||
may consider it more useful to permit linking proprietary applications with
|
||||
the library. If this is what you want to do, use the GNU Lesser General
|
||||
Public License instead of this License. But first, please read
|
||||
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
27
README.md
27
README.md
|
@ -1,17 +1,20 @@
|
|||
Json2Bin Converter
|
||||
==================
|
||||
[](https://www.gnu.org/licenses/gpl-3.0)
|
||||
# 2D_Engine_Casio_Tool
|
||||
This tool is used to make game data for the 2D_Engine_Casio [Gitea](https://gitea.skadubpc.net/ulysse/2D_Engine_Casio).
|
||||
|
||||
The library json by nlomann is used to read json files in this program [GitHub](https://github.com/nlohmann/json)
|
||||
## Description
|
||||
|
||||
You can reuse and modify it by anyway, just give credits and i'll be happy !
|
||||
## Licences
|
||||
- This program is open-source : you can redistribute and/or modify it under the term of the **GNU GPLv3**.
|
||||
Copyright (C) 2025 Ulysse Cura. See [LICENSE](LICENSE) or [gnu.org/licenses/gpl-3.0.html](https://www.gnu.org/licenses/gpl-3.0.html).
|
||||
|
||||
Manual
|
||||
======
|
||||
- Folder `fxconv` contains tools under **MIT license** :
|
||||
Copyright (C) 2015-2022 gint/fxSDK contributors. See [fxconv/LICENSE](fxconv/LICENSE).
|
||||
[Git](https://git.planet-casio.com/Lephenixnoir/fxsdk)
|
||||
|
||||
Put your struct, load, write and free function into bin.cpp and bin.hpp and compile it with "make", you can then use the ouputed binary "json2bin_converter" with the json input file and the binary output file which will be (re)created when the command is executed.
|
||||
- Files from the gint project is used in directory [gint/](gint/).
|
||||
[Git](https://git.planet-casio.com/Lephenixnoir/gint)
|
||||
|
||||
Exemple :
|
||||
|
||||
```sh
|
||||
json2bin_converter test.json test.bin
|
||||
```
|
||||
- Folder `src/nlohmann/json` contains code under **MIT license** :
|
||||
Copyright (c) 2013-2025 Niels Lohmann. See [src/nlohmann/json/LICENSE.MIT](src/nlohmann/json/LICENSE.MIT).
|
||||
[GitHub](https://github.com/nlohmann/json)
|
||||
|
|
|
@ -0,0 +1,7 @@
|
|||
Copyright (C) 2015-2022 gint/fxSDK contributors
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
@ -0,0 +1,3 @@
|
|||
# Disclaimer
|
||||
This fxconv copy is a part of the fxsdk wich is under the **MIT license**. See [LICENSE](LICENSE)
|
||||
It is modified to work for an amd64 architecture.
|
|
@ -0,0 +1,167 @@
|
|||
#! /usr/bin/env python3
|
||||
|
||||
import getopt
|
||||
import sys
|
||||
import os
|
||||
import fxconv
|
||||
import importlib.util
|
||||
|
||||
help_string = f"""
|
||||
usage: fxconv [<TYPE>] <INPUT> -o <OUTPUT> [--fx|--cg] [<PARAMETERS>...]
|
||||
|
||||
fxconv converts resources such as images and fonts into binary formats for
|
||||
fxSDK applications, using gint and custom conversion formats.
|
||||
|
||||
When no TYPE is specified (automated mode), fxconv looks for type and
|
||||
parameters in an fxconv-metadata.txt file in the same folder as the input. This
|
||||
is normally the default for add-ins.
|
||||
|
||||
When TYPE is specified (one-shot conversion), it should be one of:
|
||||
-b, --binary Turn data into an object file without conversion
|
||||
-f, --font Convert to gint's topti font format
|
||||
--bopti-image Convert to gint's bopti image format
|
||||
--libimg-image Convert to the libimg image format
|
||||
--custom Use a custom converter; you might want to specify an explicit
|
||||
type by adding "custom-type:your_custom_type" (see below)
|
||||
Custom converters can be specified by:
|
||||
--converters Semicolon-separated list of custom converters (converters.py
|
||||
in the current directory is detected as one per legacy)
|
||||
|
||||
During one-shot conversions, parameters can be specified with a "NAME:VALUE"
|
||||
syntax (names can contain dots). For example:
|
||||
fxconv -f myfont.png -o myfont.o charset:ascii grid.padding:1 height:7
|
||||
|
||||
Some formats differ between platforms so you should specify it when possible:
|
||||
--fx CASIO fx-9860G family (black-and-white calculators)
|
||||
--cg, --cp CASIO fx-CG 50 / fx-CP 400 family (16-bit color calcs)
|
||||
|
||||
Finally, there is some support (non-final) for PythonExtra, in which case the
|
||||
output file is as Python file instead of an object file.
|
||||
--py Convert for PythonExtra (some types supported)
|
||||
--py-compact Use compact bytes notation (shorter, but non-printable)
|
||||
""".strip()
|
||||
|
||||
# Simple error-warnings system
|
||||
FxconvError = fxconv.FxconvError
|
||||
|
||||
def err(msg):
|
||||
print("\x1b[31;1merror:\x1b[0m", msg, file=sys.stderr)
|
||||
return 1
|
||||
def warn(msg):
|
||||
print("\x1b[33;1mwarning:\x1b[0m", msg, file=sys.stderr)
|
||||
|
||||
# "converters" module from the user project... if it exists. This
|
||||
# auto-detection is legacy, you should use --converters instead.
|
||||
try:
|
||||
import converters as conv
|
||||
converters = [conv.convert]
|
||||
except ImportError:
|
||||
converters = []
|
||||
|
||||
def main():
|
||||
types = "binary image font bopti-image libimg-image custom"
|
||||
mode = ""
|
||||
output = None
|
||||
model = None
|
||||
target = { 'toolchain': None, 'arch': None, 'section': None }
|
||||
use_custom = False
|
||||
converter_paths = []
|
||||
py = { 'enabled': False, 'compact': False }
|
||||
|
||||
# Parse command-line arguments
|
||||
|
||||
if len(sys.argv) == 1:
|
||||
print(help_string, file=sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
try:
|
||||
longs = ["help", "output=", "toolchain=", "arch=", "section=", "fx",
|
||||
"cg", "cp", "converters=", "py", "py-compact"] + types.split()
|
||||
opts, args = getopt.gnu_getopt(sys.argv[1:], "hsbifo:", longs)
|
||||
except getopt.GetoptError as error:
|
||||
return err(error)
|
||||
|
||||
for name, value in opts:
|
||||
# Print usage
|
||||
if name == "--help":
|
||||
print(help_string, file=sys.stderr)
|
||||
return 0
|
||||
elif name in [ "-o", "--output" ]:
|
||||
output = value
|
||||
elif name in [ "--fx", "--cg" ]:
|
||||
model = name[2:]
|
||||
elif name == "--cp":
|
||||
model = "cg"
|
||||
elif name == "--toolchain":
|
||||
target['toolchain'] = value
|
||||
elif name == "--arch":
|
||||
target['arch'] = value
|
||||
elif name == "--section":
|
||||
target['section'] = value
|
||||
elif name == "--custom":
|
||||
use_custom = True
|
||||
mode = "custom"
|
||||
elif name == "--converters":
|
||||
converter_paths = [path for path in value.split(";") if path]
|
||||
elif name == "--py":
|
||||
py['enabled'] = True
|
||||
elif name == "--py-compact":
|
||||
py['compact'] = True
|
||||
# Other names are modes
|
||||
else:
|
||||
mode = name[1] if len(name)==2 else name[2:]
|
||||
|
||||
# Remaining arguments
|
||||
if args == []:
|
||||
err(f"no input file")
|
||||
sys.exit(1)
|
||||
input = args.pop(0)
|
||||
|
||||
# In automatic mode, look for information in fxconv-metadata.txt
|
||||
if mode == "":
|
||||
metadata_file = os.path.join(os.path.dirname(input),
|
||||
"fxconv-metadata.txt")
|
||||
|
||||
if not os.path.exists(metadata_file):
|
||||
return err(f"using auto mode but {metadata_file} does not exist")
|
||||
|
||||
metadata = fxconv.Metadata(path=metadata_file)
|
||||
params = metadata.rules_for(input)
|
||||
|
||||
if params is None:
|
||||
return err(f"no metadata specified for {input}")
|
||||
|
||||
if "section" in params:
|
||||
target["section"] = params["section"]
|
||||
|
||||
# In manual conversion modes, read parameters from the command-line
|
||||
else:
|
||||
params = fxconv.parse_parameters(args)
|
||||
|
||||
if "type" in params or "custom-type" in params:
|
||||
pass
|
||||
elif len(mode) == 1:
|
||||
params["type"] = { "b": "binary", "i": "image", "f": "font" }[mode]
|
||||
else:
|
||||
params["type"] = mode
|
||||
|
||||
# Will be deprecated in the future
|
||||
if params.get("type") == "image":
|
||||
warn("type 'image' is deprecated, use 'bopti-image' instead")
|
||||
params["type"] = "bopti-image"
|
||||
|
||||
# Load custom converters:
|
||||
for path in converter_paths:
|
||||
spec = importlib.util.spec_from_file_location("converters", path)
|
||||
module = importlib.util.module_from_spec(spec)
|
||||
spec.loader.exec_module(module)
|
||||
converters.append(module.convert)
|
||||
|
||||
params["py"] = py
|
||||
fxconv.convert(input, params, target, output, model, converters)
|
||||
|
||||
if __name__ == "__main__":
|
||||
try:
|
||||
sys.exit(main())
|
||||
except fxconv.FxconvError as e:
|
||||
sys.exit(err(e))
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,83 @@
|
|||
//---
|
||||
// config - Compile-time generate configuration
|
||||
//---
|
||||
|
||||
#ifndef GINT_CONFIG
|
||||
#define GINT_CONFIG
|
||||
|
||||
/* GINT_VERSION: Latest tag and number of additional commits
|
||||
"2.1.0" = Release 2.1.0
|
||||
"2.1.1-5" = 5 commits after release 2.1.1 */
|
||||
#define GINT_VERSION "2.11.0"
|
||||
|
||||
/* GINT_HASH: Commit hash with 7 digits
|
||||
0x03f7c0a0 = Commit 3f7c0a0 */
|
||||
#define GINT_HASH 0xbadbd0f
|
||||
|
||||
/* GINT_HW_{FX,CG}: Identifies the type of hardware running the program. */
|
||||
#if defined(FX9860G)
|
||||
# define GINT_HW_FX 1
|
||||
# define GINT_HW_CG 0
|
||||
# define GINT_HW_CP 0
|
||||
# define GINT_HW_SWITCH(FX,CG,CP) (FX)
|
||||
#elif defined(FXCG50)
|
||||
# define GINT_HW_FX 0
|
||||
# define GINT_HW_CG 1
|
||||
# define GINT_HW_CP 0
|
||||
# define GINT_HW_SWITCH(FX,CG,CP) (CG)
|
||||
#elif defined(FXCP)
|
||||
# define GINT_HW_FX 0
|
||||
# define GINT_HW_CG 0
|
||||
# define GINT_HW_CP 1
|
||||
# define GINT_HW_SWITCH(FX,CG,CP) (CP)
|
||||
#endif
|
||||
|
||||
/* Shorthand to simplify definitions below. Won't be needed for long. */
|
||||
#if defined(FX9860G_G3A)
|
||||
# define GINT_FX9860G_G3A 1
|
||||
#else
|
||||
# define GINT_FX9860G_G3A 0
|
||||
#endif
|
||||
|
||||
/* GINT_OS_{FX,CG}: Identifies the type of OS API we're assuming. Currently I
|
||||
see no reason this would be different from hardware, but who knows. */
|
||||
#define GINT_OS_FX GINT_HW_FX
|
||||
#define GINT_OS_CG GINT_HW_CG
|
||||
#define GINT_OS_CP GINT_HW_CP
|
||||
#define GINT_OS_SWITCH GINT_HW_SWITCH
|
||||
|
||||
/* GINT_NO_OS_STACK: Disables using a chunk of the OS stack as a heap. The top
|
||||
section covering 355/512 ko is otherwise used. (fx-CG 50) */
|
||||
/* #undef GINT_NO_OS_STACK */
|
||||
|
||||
/* GINT_USER_VRAM: Selects whether to store VRAMs in the user stack or in the
|
||||
OS stack. Deprecated, now controlled by GINT_NO_OS_STACK. (fx-CG 50) */
|
||||
/* #undef GINT_USER_VRAM */
|
||||
|
||||
#ifdef GINT_USER_VRAM
|
||||
# define GINT_NO_OS_STACK
|
||||
#endif
|
||||
|
||||
/* GINT_STATIC_GRAY: Selects whether additional gray VRAMs are allocated
|
||||
statically or in the system heap (fx-9860G) */
|
||||
/* #undef GINT_STATIC_GRAY */
|
||||
|
||||
/* GINT_KMALLOC_DEBUG: Selects whether kmalloc debug functions are enabled
|
||||
(these are mainly data structure integrity checks and information that make
|
||||
sense for a developer). This is independent from statistics, which can be
|
||||
enabled or disabled at runtime. */
|
||||
/* #undef GINT_KMALLOC_DEBUG */
|
||||
|
||||
/* GINT_USB_DEBUG: Selects whether USB debug functions are enabled */
|
||||
/* #undef GINT_USB_DEBUG */
|
||||
|
||||
/* GINT_RENDER_DMODE: Selects whether the dmode override is available on
|
||||
rendering functions. */
|
||||
#define GINT_RENDER_DMODE (GINT_HW_FX || GINT_FX9860G_G3A)
|
||||
|
||||
/* GINT_RENDER_{MONO,RGB}: Enable the mono/rgb rendering API.
|
||||
Currently these are exclusive. */
|
||||
#define GINT_RENDER_MONO (GINT_HW_FX || GINT_FX9860G_G3A)
|
||||
#define GINT_RENDER_RGB ((GINT_HW_CG || GINT_HW_CP) && !GINT_FX9860G_G3A)
|
||||
|
||||
#endif /* GINT_CONFIG */
|
|
@ -0,0 +1,50 @@
|
|||
//---
|
||||
// gint:defs:attributes - Macros for compiler-specific attributes
|
||||
//---
|
||||
|
||||
#ifndef GINT_DEFS_ATTRIBUTES
|
||||
#define GINT_DEFS_ATTRIBUTES
|
||||
|
||||
/* Objects from specific sections */
|
||||
#define GSECTION(x) __attribute__((section(x)))
|
||||
/* Objects from the gint's uninitialized BSS section */
|
||||
#define GBSS __attribute__((section(".gint.bss")))
|
||||
/* Additional sections that are only needed on SH3 */
|
||||
#define GRODATA3 __attribute__((section(".gint.rodata.sh3")))
|
||||
#define GDATA3 __attribute__((section(".gint.data.sh3")))
|
||||
#define GBSS3 __attribute__((section(".gint.bss.sh3")))
|
||||
/* Objects for the ILRAM, XRAM and YRAM regions */
|
||||
#define GILRAM __attribute__((section(".ilram")))
|
||||
#define GXRAM __attribute__((section(".xyram")))
|
||||
#define GYRAM __attribute__((section(".xyram")))
|
||||
|
||||
/* Unused parameters or variables */
|
||||
#define GUNUSED __attribute__((unused))
|
||||
/* Functions that *must* be inlined */
|
||||
#define GINLINE __attribute__((always_inline)) inline
|
||||
|
||||
/* Aligned variables */
|
||||
#define GALIGNED(x) __attribute__((aligned(x)))
|
||||
/* Packed structures. I require explicit alignment because if it's unspecified,
|
||||
GCC cannot optimize access size, and reads to memory-mapped I/O with invalid
|
||||
access sizes silently fail - honestly you don't want this to happen */
|
||||
#define GPACKED(x) __attribute__((packed, aligned(x)))
|
||||
/* Packed enumerations */
|
||||
#define GPACKEDENUM __attribute__((packed))
|
||||
/* Transparent unions */
|
||||
#define GTRANSPARENT __attribute__((transparent_union))
|
||||
|
||||
/* Functions and globals that are visible through whole-program optimization */
|
||||
#define GVISIBLE __attribute__((externally_visible))
|
||||
|
||||
/* Weak symbols */
|
||||
#define GWEAK __attribute__((weak))
|
||||
|
||||
/* Constructors */
|
||||
#define GCONSTRUCTOR __attribute__((constructor))
|
||||
#define GDESTRUCTOR __attribute__((destructor))
|
||||
|
||||
/* Functions that do not return */
|
||||
#define GNORETURN __attribute__((noreturn))
|
||||
|
||||
#endif /* GINT_DEFS_ATTRIBUTES */
|
|
@ -0,0 +1,68 @@
|
|||
//---
|
||||
// gint:defs:types - Type definitions
|
||||
//---
|
||||
|
||||
#ifndef GINT_DEFS_TYPES
|
||||
#define GINT_DEFS_TYPES
|
||||
|
||||
#include "attributes.h"
|
||||
|
||||
/* For size_t, mainly */
|
||||
#include <stddef.h>
|
||||
/* For all fixed-width integer types */
|
||||
#include <stdint.h>
|
||||
/* For human-readable boolean types */
|
||||
#include <stdbool.h>
|
||||
/* Common system types: ssize_t, off_t, etc. */
|
||||
#include <sys/types.h>
|
||||
/* For va_list */
|
||||
#include <stdarg.h>
|
||||
|
||||
/* Fixed-width types for bit fields are quite meaningless */
|
||||
typedef unsigned int uint;
|
||||
|
||||
//---
|
||||
// Short types
|
||||
//---
|
||||
|
||||
typedef unsigned int uint;
|
||||
typedef uint8_t u8;
|
||||
typedef uint16_t u16;
|
||||
typedef uint32_t u32;
|
||||
typedef uint64_t u64;
|
||||
typedef int8_t i8;
|
||||
typedef int16_t i16;
|
||||
typedef int32_t i32;
|
||||
typedef int64_t i64;
|
||||
|
||||
//---
|
||||
// Structure elements
|
||||
//----
|
||||
|
||||
/* Giving a type to padding bytes is misguiding, let's hide it in a macro */
|
||||
#define pad_nam2(c) _ ## c
|
||||
#define pad_name(c) pad_nam2(c)
|
||||
#define pad(bytes) uint8_t pad_name(__COUNTER__)[bytes]
|
||||
|
||||
/* byte_union() - union between an uint8_t 'byte' element and a bit field */
|
||||
#define byte_union(name, fields) \
|
||||
union { \
|
||||
uint8_t byte; \
|
||||
struct { fields } GPACKED(1); \
|
||||
} GPACKED(1) name
|
||||
|
||||
/* word_union() - union between an uint16_t 'word' element and a bit field */
|
||||
#define word_union(name, fields) \
|
||||
union { \
|
||||
uint16_t word; \
|
||||
struct { fields } GPACKED(2); \
|
||||
} GPACKED(2) name
|
||||
|
||||
/* lword_union() - union between an uint32_t 'lword' element and a bit field */
|
||||
#define lword_union(name, fields) \
|
||||
union { \
|
||||
uint32_t lword; \
|
||||
struct { fields } GPACKED(4); \
|
||||
} GPACKED(4) name
|
||||
|
||||
#endif /* GINT_DEFS_TYPES */
|
|
@ -0,0 +1,143 @@
|
|||
//---
|
||||
// gint:display-cg - fx-CG 50 rendering functions
|
||||
//
|
||||
// This module covers rendering functions specific to the fx-CG 50. In addition
|
||||
// to triple-buffering management, this mainly includes image manipulation
|
||||
// tools as well as the very versatile dimage_effect() and dsubimage_effect()
|
||||
// functions that support high-performance image rendering with a number of
|
||||
// geometric and color effects.
|
||||
//
|
||||
// The fx-CG OS restricts the display to a 384x216 rectangle rougly around the
|
||||
// center, leaving margins on three sides. However, gint configures the display
|
||||
// to use the full 396x224 surface!
|
||||
//---
|
||||
|
||||
#ifndef GINT_DISPLAY_CG
|
||||
#define GINT_DISPLAY_CG
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include "defs/types.h"
|
||||
#include "image.h"
|
||||
|
||||
/* Dimensions of the VRAM */
|
||||
#if GINT_HW_CG
|
||||
#define DWIDTH 396
|
||||
#define DHEIGHT 224
|
||||
#elif GINT_HW_CP
|
||||
#define DWIDTH 320
|
||||
#define DHEIGHT 528
|
||||
#endif
|
||||
|
||||
/* gint VRAM address. This value must always point to a 32-aligned buffer of
|
||||
size 177408. Any function can use it freely to perform rendering or store
|
||||
data when not drawing. Triple buffering is already implemented in gint, see
|
||||
the dvram() function below.
|
||||
|
||||
In this module, colors are in the 16-bit big-endian R5G6B5 format, as it is
|
||||
the format used by the display controller. */
|
||||
extern uint16_t *gint_vram;
|
||||
|
||||
/* Provide a platform-agnostic definition of color_t.
|
||||
Some functions also support transparency, in which case they take an [int]
|
||||
as argument and recognize negative values as transparent. */
|
||||
typedef uint16_t color_t;
|
||||
|
||||
enum {
|
||||
/* Compatibility with fx9860g color names */
|
||||
C_WHITE = 0xffff,
|
||||
C_LIGHT = 0xad55,
|
||||
C_DARK = 0x528a,
|
||||
C_BLACK = 0x0000,
|
||||
|
||||
/* Other colors */
|
||||
C_RED = 0xf800,
|
||||
C_GREEN = 0x07e0,
|
||||
C_BLUE = 0x001f,
|
||||
|
||||
C_NONE = -1,
|
||||
C_INVERT = -2,
|
||||
};
|
||||
|
||||
/* RGB color maker. Takes three channels of value 0..31 each (the extra bit of
|
||||
green is not used). */
|
||||
#define C_RGB(r,g,b) (((r) << 11) | ((g) << 6) | (b))
|
||||
|
||||
/* See <gint/image.h> for the details on image manipulation. */
|
||||
typedef image_t bopti_image_t;
|
||||
|
||||
|
||||
//---
|
||||
// Video RAM management
|
||||
//---
|
||||
|
||||
/* dsetvram(): Control video RAM address and triple buffering
|
||||
|
||||
Normal rendering under gint uses double-buffering: there is one image
|
||||
displayed on the screen and one in memory, in a region called the video RAM
|
||||
(VRAM). The application draws frames in the VRAM then sends them to the
|
||||
screen only when they are finished, using dupdate().
|
||||
|
||||
On fx-CG, sending frames with dupdate() is a common bottleneck because it
|
||||
takes about 11 ms. Fortunately, while the DMA is sending the frame to the
|
||||
display, the CPU is available to do work in parallel. This function sets up
|
||||
triple buffering (ie. a second VRAM) so that the CPU can start working on
|
||||
the next frame while the DMA is sending the current one.
|
||||
|
||||
However, experience shows minimal performance improvements, because writing
|
||||
to main RAM does not parallelize with DMA transfers. Since gint 2.8, this
|
||||
is no longer the default, and the memory for the extra VRAM is instead
|
||||
available via malloc().
|
||||
|
||||
VRAMs must be contiguous, 32-aligned, (2*396*224)-byte buffers with 32 bytes
|
||||
of extra data on each side (ie. 32 bytes into a 32-aligned buffer of size
|
||||
177472).
|
||||
|
||||
@main Main VRAM area, used alone if [secondary] is NULL
|
||||
@secondary Additional VRAM area, enables triple buffering if non-NULL */
|
||||
// TODO: In gint 3 the triple buffering mechanism will be removed. Applications
|
||||
// that want to change VRAMs in-between every frame will be able to do so by
|
||||
// talking directly to the video interface to set VRAM, and wrapping dupdate.
|
||||
// Basically it will just no longer be handled by gint itself.
|
||||
void dsetvram(uint16_t *main, uint16_t *secondary);
|
||||
|
||||
/* dgetvram() - Get VRAM addresses
|
||||
Returns the VRAM buffer addresses used to render on fx-CG 50. */
|
||||
void dgetvram(uint16_t **main, uint16_t **secondary);
|
||||
|
||||
|
||||
//---
|
||||
// VRAM backup
|
||||
// On the fx-CP gint backs up the VRAM when loading and restores it when
|
||||
// leaving. While this is a transparent mechanism, the following parts of the
|
||||
// implementation are exposed at the internal API level.
|
||||
//---
|
||||
|
||||
/* Encode the VRAM contents between [in_start] and [in_end] at [output]. While
|
||||
[*in_end] is excluded from the encoding, it will be modified temporarily to
|
||||
serve as bounds check, so it must not be accessed asynchronously during the
|
||||
encoding. The size of the output is not known but is at most the distance
|
||||
between in_end and in_start in bytes. Setting output = in_start to compress
|
||||
in-place is supported. Returns the end pointer after encoding. */
|
||||
uint8_t *gint_vrambackup_encode(
|
||||
uint8_t *output, uint16_t *in_start, uint16_t *in_end);
|
||||
|
||||
/* Predefine palette based on the GUI at the Hollyhock loading screen. Contains
|
||||
109 entries plus a 110th dummy entry used internally as bounds check. */
|
||||
extern uint16_t gint_vrambackup_palette[110];
|
||||
|
||||
/* Get the pointer to the encoded VRAM backup created at load time. If [size]
|
||||
is not NULL, sets the size in [*size]. The pointer is heap allocated and
|
||||
remains owned by gint. */
|
||||
void *gint_vrambackup_get(int *size);
|
||||
|
||||
/* Decode the load-time VRAM backup back to VRAM. */
|
||||
void gint_vrambackup_show(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* GINT_DISPLAY_CG */
|
|
@ -0,0 +1,846 @@
|
|||
//---
|
||||
// gint:image - Image manipulation and rendering
|
||||
//
|
||||
// Note: this module is currently only available on fx-CG.
|
||||
//
|
||||
// This header provides image manipulation functions. This mainly consists of a
|
||||
// reference-based image format, various access and modification functions, and
|
||||
// a number of high-performance transformations and rendering effects. If you
|
||||
// find yourself limited by rendering time, note that RAM writing speed is
|
||||
// often the bottleneck, and image rendering is much faster in Azur (which is
|
||||
// what the renderer was initially designed for).
|
||||
//
|
||||
// This module supports 3 bit depths: full-color 16-bit (RGB565), indexed 8-bit
|
||||
// (P8) and indexed 4-bit (P4). All three have an "alpha" variation where one
|
||||
// color is treated as transparent, leading to 6 total formats.
|
||||
//
|
||||
// The image renderers support so-called *dynamic effects*, which are image
|
||||
// transformations performed on-the-fly while rendering, without generating an
|
||||
// intermediate image. They comprise straightforward transformations that
|
||||
// achieve similar performance to straight rendering and can be combined to
|
||||
// some extent, which makes them reliable whenever applicable.
|
||||
//
|
||||
// For images of the RGB16 and P8 bit depths, the module supports a rich API
|
||||
// with image subsurfaces and a fairly large sets of geometric and color
|
||||
// transforms, including some in-place. P4 is not supported in most of these
|
||||
// functions because the dense bit packing is both impractical and slower for
|
||||
// these applications.
|
||||
//---
|
||||
|
||||
#ifndef GINT_IMAGE
|
||||
#define GINT_IMAGE
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include "config.h"
|
||||
#include "defs/attributes.h"
|
||||
#include <stdint.h>
|
||||
|
||||
struct dwindow;
|
||||
|
||||
//---
|
||||
// Image structures
|
||||
//---
|
||||
|
||||
/* Image formats. Note that transparency really only indicates the default
|
||||
rendering method, as a transparent background can always be added or removed
|
||||
by a dynamic effect on any image. */
|
||||
enum {
|
||||
IMAGE_RGB565 = 0, /* RGB565 without alpha */
|
||||
IMAGE_RGB565A = 1, /* RGB565 with one transparent color */
|
||||
IMAGE_P8_RGB565 = 4, /* 8-bit palette, all opaque colors */
|
||||
IMAGE_P8_RGB565A = 5, /* 8-bit with one transparent color */
|
||||
IMAGE_P4_RGB565 = 6, /* 4-bit palette, all opaque colors */
|
||||
IMAGE_P4_RGB565A = 3, /* 4-bit with one transparent color */
|
||||
|
||||
IMAGE_DEPRECATED_P8 = 2,
|
||||
};
|
||||
|
||||
/* Quick macros to compare formats by storage size */
|
||||
#define IMAGE_IS_RGB16(format) \
|
||||
((format) == IMAGE_RGB565 || (format) == IMAGE_RGB565A)
|
||||
#define IMAGE_IS_P8(format) \
|
||||
((format) == IMAGE_P8_RGB565 || (format) == IMAGE_P8_RGB565A)
|
||||
#define IMAGE_IS_P4(format) \
|
||||
((format) == IMAGE_P4_RGB565 || (format) == IMAGE_P4_RGB565A)
|
||||
/* Check whether image format has an alpha color */
|
||||
#define IMAGE_IS_ALPHA(format) \
|
||||
((format) == IMAGE_RGB565A || \
|
||||
(format) == IMAGE_P8_RGB565A || \
|
||||
(format) == IMAGE_P4_RGB565A)
|
||||
/* Check whether image format uses a palette */
|
||||
#define IMAGE_IS_INDEXED(format) \
|
||||
(IMAGE_IS_P8(format) || IMAGE_IS_P4(format))
|
||||
|
||||
/* Image flags. These are used for memory management, mostly. */
|
||||
enum {
|
||||
IMAGE_FLAGS_DATA_RO = 0x01, /* Data is read-only */
|
||||
IMAGE_FLAGS_PALETTE_RO = 0x02, /* Palette is read-only */
|
||||
IMAGE_FLAGS_DATA_ALLOC = 0x04, /* Data is malloc()'d */
|
||||
IMAGE_FLAGS_PALETTE_ALLOC = 0x08, /* Palette is malloc()'d */
|
||||
};
|
||||
|
||||
/* image_t: gint's native bitmap image format
|
||||
Images of this format can be created through this header's API but also by
|
||||
using the fxSDK's built-in image converters with fxconv. */
|
||||
typedef struct
|
||||
{
|
||||
/* Color format, one of the IMAGE_* values defined above */
|
||||
uint8_t format;
|
||||
/* Additional flags, a combination of IMAGE_FLAGS_* values */
|
||||
uint8_t flags;
|
||||
/* Number of colors in the palette; this includes alpha for transparent
|
||||
images, as alpha is always the first entry.
|
||||
RGB16: 0
|
||||
P8: Ranges between 1 and 256
|
||||
P4: 16 */
|
||||
int16_t color_count;
|
||||
/* Full width and height, in pixels */
|
||||
uint16_t width;
|
||||
uint16_t height;
|
||||
/* Byte stride between lines */
|
||||
int stride;
|
||||
|
||||
/* Pixel data in row-major order, left to right.
|
||||
- RGB16: 2 bytes per entry, each row padded to 4 bytes for alignment.
|
||||
Each 2-byte value is an RGB565 color.
|
||||
- P8: 1 signed byte per entry. Each byte is a palette index shifted by
|
||||
128 (to access the color, use palette[<value>+128]).
|
||||
- P4: 4 bits per entry, each row padded to a full byte. Each entry is a
|
||||
direct palette index between 0 and 15. */
|
||||
void *data;
|
||||
|
||||
/* For P8 and P4, color palette. The number of entries allocated in the
|
||||
array is equal to the color_count attribute. */
|
||||
uint16_t *palette;
|
||||
|
||||
} GPACKED(4) image_t;
|
||||
|
||||
/* Dynamic effects: these transformations can be applied on images while
|
||||
rendering. Not all effects can be combined; unless specified otherwise:
|
||||
- HFLIP and VFLIP can both be added regardless of any other effect
|
||||
- At most one color effect can be applied */
|
||||
enum {
|
||||
/* Value 0x01 is reserved, because it is DIMAGE_NOCLIP, which although
|
||||
part of the old API still needs to be supported. */
|
||||
|
||||
/* [Any]: Skip clipping the command against the source image */
|
||||
IMAGE_NOCLIP_INPUT = 0x04,
|
||||
/* [Any]: Skip clipping the command against the output VRAM */
|
||||
IMAGE_NOCLIP_OUTPUT = 0x08,
|
||||
/* [Any]: Skip clipping both */
|
||||
IMAGE_NOCLIP = IMAGE_NOCLIP_INPUT | IMAGE_NOCLIP_OUTPUT,
|
||||
|
||||
// Geometric effects. These values should remain at exactly bit 8 and
|
||||
// following, or change gint_image_mkcmd() along with it.
|
||||
|
||||
/* [Any]: Flip image vertically */
|
||||
IMAGE_VFLIP = 0x0100,
|
||||
/* [Any]: Flip image horizontally */
|
||||
IMAGE_HFLIP = 0x0200,
|
||||
|
||||
// Color effects
|
||||
|
||||
/* [RGB565, P8_RGB565, P4_RGB565]: Make a color transparent
|
||||
Adds one argument:
|
||||
* Color to clear (RGB16: 16-bit value; P8/P4: palette index) */
|
||||
IMAGE_CLEARBG = 0x10,
|
||||
/* [RGB565, P8_RGB565, P4_RGB565]: Turn a color into another
|
||||
Adds two arguments:
|
||||
* Color to replace (RGB16: 16-bit value; P8/P4: palette index)
|
||||
* Replacement color (16-bit value) */
|
||||
IMAGE_SWAPCOLOR = 0x20,
|
||||
/* [RGB565A, P8_RGB565A, P4_RGB565A]: Add a background
|
||||
Adds one argument:
|
||||
* Background color (16-bit value) */
|
||||
IMAGE_ADDBG = 0x40,
|
||||
/* [RGB565A, P8_RGB565A, P4_RGB565A]: Dye all non-transparent pixels
|
||||
Adds one argument:
|
||||
* Dye color (16-bit value) */
|
||||
IMAGE_DYE = 0x80,
|
||||
};
|
||||
|
||||
//---
|
||||
// Image creation and destruction
|
||||
//---
|
||||
|
||||
#if GINT_RENDER_RGB
|
||||
|
||||
/* image_alloc(): Create a new (uninitialized) image
|
||||
|
||||
This function allocates a new image of the specified dimensions and format.
|
||||
It always allocates a new data array; if you need to reuse a data array, use
|
||||
the lower-level image_create() or image_create_sub().
|
||||
|
||||
The first parameters [width] and [height] specify the dimensions of the new
|
||||
image in pixels. The [format] should be one of the IMAGE_* formats, for
|
||||
example IMAGE_RGB565A or IMAGE_P4_RGB565.
|
||||
|
||||
This function does not specify or initialize the palette of the new image;
|
||||
use image_set_palette(), image_alloc_palette() or image_copy_palette()
|
||||
after calling this function.
|
||||
|
||||
The returned image structure must be freed with image_free() after use.
|
||||
|
||||
@width Width of the new image
|
||||
@height Height of the new image
|
||||
@format Pixel format; one of the IMAGE_* formats defined above */
|
||||
image_t *image_alloc(int width, int height, int format);
|
||||
|
||||
/* image_set_palette(): Specify an external palette for an image
|
||||
|
||||
This function sets the image's palette to the provided address. The number
|
||||
of entries allocated must be specified in size. It is also the caller's
|
||||
responsibility to ensure that the palette covers all the indices used in the
|
||||
image data.
|
||||
|
||||
The old palette, if owned by the image, is freed. If [owns=true] the
|
||||
palette's ownership is given to the image, otherwise it is kept external. */
|
||||
void image_set_palette(image_t *img, uint16_t *palette, int size, bool owns);
|
||||
|
||||
/* image_alloc_palette(): Allocate a new palette for an image
|
||||
|
||||
This function allocates a new palette for an image. The number of entries is
|
||||
specified in size; for P8 it can vary between 1 and 256, for P4 it is
|
||||
ignored (P4 images always have 16 colors).
|
||||
|
||||
The old palette, if owned by the image, is freed. The entries of the new
|
||||
palette are all initialized to 0. If size is -1, the format's default
|
||||
palette size is used. Returns true on success. */
|
||||
bool image_alloc_palette(image_t *img, int size);
|
||||
|
||||
/* image_copy_palette(): Copy another image's palette
|
||||
|
||||
This function allocates a new palette for an image, and initializes it with
|
||||
a copy of another image's palette. For P8 the palette can be resized by
|
||||
specifying a value other than -1 as the size; by default, the source image's
|
||||
palette size is used (within the limits of the new format). Retuns true on
|
||||
success. */
|
||||
bool image_copy_palette(image_t const *src, image_t *dst, int size);
|
||||
|
||||
/* image_create(): Create a bare image with no data/palette
|
||||
|
||||
This function allocates a new image structure but without data or palette.
|
||||
The [data] and [palette] members are NULL, [color_count] and [stride] are 0.
|
||||
|
||||
This function is useful to create images that reuse externally-provided
|
||||
information. It is intended that the user of this function sets the [data]
|
||||
and [stride] fields themselves, along with the IMAGE_FLAGS_DATA_ALLOC flag
|
||||
if the image should own its data.
|
||||
|
||||
The [palette] and [color_count] members can be set with image_set_palette(),
|
||||
image_alloc_palette(), image_copy_palette(), or manually.
|
||||
|
||||
The returned image structure must be freed with image_free() after use. */
|
||||
image_t *image_create(int width, int height, int format);
|
||||
|
||||
/* image_create_vram(): Create a reference to gint_vram
|
||||
|
||||
This function creates a new RGB565 image that references gint_vram. Using
|
||||
this image as target for transformation functions can effectively render
|
||||
transformed images to VRAM.
|
||||
|
||||
The value of gint_vram is captured when this function is called, and does
|
||||
not update after dupdate() when triple-buffering is used. The user should
|
||||
account for this option. (Using this function twice then replacing one of
|
||||
the [data] pointers is allowed.)
|
||||
|
||||
The VRAM image owns no data but it does own its own structure so it must
|
||||
still be freed with image_free() after use. */
|
||||
image_t *image_create_vram(void);
|
||||
|
||||
/* image_free(): Free and image and the data it owns
|
||||
|
||||
This function frees the provided image structure and the data that it owns.
|
||||
Images converted by fxconv should not be freed; nonetheless, this functions
|
||||
distinguishes them and should work. Images are not expected to be created on
|
||||
the stack.
|
||||
|
||||
If the image has the IMAGE_FLAGS_DATA_ALLOC flag, the data pointer is also
|
||||
freed. Similarly, the image has the IMAGE_FLAGS_PALETTE_ALLOC flag, the
|
||||
palette is freed. Make sure to not free images when references to them still
|
||||
exist, as this could cause the reference's pointers to become dangling. */
|
||||
void image_free(image_t *img);
|
||||
|
||||
//---
|
||||
// Basic image access and information
|
||||
//---
|
||||
|
||||
/* image_valid(): Check if an image is valid
|
||||
An image is considered valid if it has a valid profile, a non-NULL data
|
||||
pointer, and for palette formats a valid palette pointer. */
|
||||
bool image_valid(image_t const *img);
|
||||
|
||||
/* image_alpha(): Get the alpha value for an image format
|
||||
|
||||
This function returns the alpha value for any specific image format:
|
||||
* RGB16: 0x0001
|
||||
* P8: -128 (0x80)
|
||||
* P4: 0
|
||||
For non-transparent formats, it returns a value that is different from all
|
||||
valid pixel values of the format, which means it is always safe to compare a
|
||||
pixel value to the image_alpha() of the format. */
|
||||
int image_alpha(int format);
|
||||
|
||||
/* image_get_pixel(): Read a pixel from the data array
|
||||
|
||||
This function reads a pixel from the image's data array at position (x,y).
|
||||
It returns the pixel's value, which is either a full-color value (RGB16) or
|
||||
a possibly-negative palette index (P8/P4). See the description of the [data]
|
||||
field of image_t for more details. The value of the pixel can be decoded
|
||||
into a 16-bit color either manually or by using the image_decode_pixel()
|
||||
function.
|
||||
|
||||
Note that reading large amounts of image data with this function will be
|
||||
slow; if you need reasonable performance, consider iterating on the data
|
||||
array manually. */
|
||||
int image_get_pixel(image_t const *img, int x, int y);
|
||||
|
||||
/* image_decode_pixel(): Decode a pixel value
|
||||
|
||||
This function decodes a pixel's value obtained from the data array (for
|
||||
instance with image_get_pixel()). For RGB16 formats this does nothing, but
|
||||
for palette formats this accesses the palette at a suitable position.
|
||||
|
||||
Note that reading large amounts of data with this function will be slow; if
|
||||
you need reasonable performance, consider inlining the format-specific
|
||||
method or iterating on the data array manually. */
|
||||
int image_decode_pixel(image_t const *img, int pixel);
|
||||
|
||||
/* image_data_size(): Compute the size of the [data] array
|
||||
This function returns the size of the data array, in bytes. This can be used
|
||||
to duplicate it. Note that for sub-images this is a subsection of another
|
||||
image's data array, and might be much larger than the sub-image. */
|
||||
int image_data_size(image_t const *img);
|
||||
|
||||
//---
|
||||
// Basic image modifications
|
||||
//---
|
||||
|
||||
/* image_set_pixel(): Set a pixel in the data array
|
||||
|
||||
This function writes a pixel into the image's data array at position (x,y).
|
||||
The pixel value must be of the proper format, as specified in the definition
|
||||
of the [data] field of image_t.
|
||||
|
||||
Formats: RGB16, P8, P4 */
|
||||
void image_set_pixel(image_t const *img, int x, int y, int value);
|
||||
|
||||
/* image_copy(): Convert and copy an image
|
||||
|
||||
This function copies an image into another image while converting certain
|
||||
formats. Unlike transforms, this function does clip, so there are no
|
||||
conditions on the size of the target.
|
||||
|
||||
If [copy_alpha] is true, transparent pixels are copied verbatim, which
|
||||
effectively replaces the top-left corner of [dst] with [src]. If it's false,
|
||||
transparent pixels of [src] are skipped, effectively rendering [src] over
|
||||
the top-left corner of [src].
|
||||
|
||||
This function converts between all formats except from RGB16 to P8/P4, since
|
||||
this requires generating a palette (which is a complex endeavour).
|
||||
Conversions from P8/P4 to RGB16 simply decode the palette. Conversions
|
||||
between P8/P4 preserve the contents but renumber the palette entries. From
|
||||
P4 to P8, the image is always preserved. From P8 to P4, the image is only
|
||||
preserved if it has less than 16 colors (this is intended to allow P4 images
|
||||
to be converted to P8 for edition by this library, and then back to P4). The
|
||||
following table summarizes the conversions:
|
||||
|
||||
Source format → RGB16 P8 P4
|
||||
Target format ↓ +-----------+----------------+------------------+
|
||||
RGB16 | Copy Decode palette Decode palette |
|
||||
P8 | - Copy Enlarge palette |
|
||||
P4 | - Narrow palette Copy |
|
||||
+-----------+----------------+------------------+
|
||||
|
||||
Note that conversions to RGB16 are not lossless because RGB565, P8 and P4
|
||||
can represent any color; if a color equal to image_alpha(IMAGE_RGB565A) is
|
||||
found during conversion, this function transforms it slightly to look
|
||||
similar instead of erroneously generating a transparent pixel.
|
||||
|
||||
Formats: RGB16 → RGB16, P8 → Anything, P4 → Anything
|
||||
Size requirement: none (clipping is performed)
|
||||
Supports in-place: No (useless) */
|
||||
void image_copy(image_t const *src, image_t *dst, bool copy_alpha);
|
||||
|
||||
/* image_copy_alloc(): Convert and copy into a new image
|
||||
This function is similar to image_copy(), but it allocates a target image of
|
||||
the desired format before copying. */
|
||||
image_t *image_copy_alloc(image_t const *src, int new_format);
|
||||
|
||||
/* image_fill(): Fill an image with a single pixel value */
|
||||
void image_fill(image_t *img, int value);
|
||||
|
||||
/* image_clear(): Fill a transparent image with its transparent value */
|
||||
void image_clear(image_t *img);
|
||||
|
||||
//---
|
||||
// Sub-image extraction
|
||||
//---
|
||||
|
||||
/* image_sub(): Build a reference to a sub-image
|
||||
|
||||
This function is used to create references to sub-images of RGB16 and P8
|
||||
images. The [data] pointer of the sub-image points somewhere within the data
|
||||
array of the source, and its [palette] pointer is identical to the source's.
|
||||
|
||||
The last parameter is a pointer to a preallocated image_t structure (usually
|
||||
on the stack) that gets filled with the data. Doing this instead of
|
||||
allocating a new object with malloc() means that there is no need to
|
||||
image_free() the sub-image, and thus it can be used inline:
|
||||
|
||||
image_t tmp;
|
||||
image_hflip(src, image_sub(dst, x, y, w, h, &tmp));
|
||||
|
||||
A preprocessor macro is used to make the last parameter optional. If it's
|
||||
not specified, a pointer to a static image_t will be returned instead. This
|
||||
is useful in inline calls as shown above, which then simplify to:
|
||||
|
||||
image_hflip(src, image_sub(dst, x, y, w, h));
|
||||
|
||||
However, another call to image_sub() or image_at() will override the
|
||||
sub-image, so you should only use this in such temporary settings. If you
|
||||
need multiple image_sub() or image_at() calls in the same statement, only
|
||||
one can use the short form.
|
||||
|
||||
If the requested rectangle does not intersect the source, the sub-image will
|
||||
be of dimension 0x0. If the image format does not support sub-images (P4),
|
||||
the sub-image will test invalid with image_valid(). */
|
||||
image_t *image_sub(image_t const *src, int x, int y, int w, int h,
|
||||
image_t *dst);
|
||||
|
||||
/* Make the last parameter optional */
|
||||
#define image_sub1(src, x, y, w, h, dst, ...) image_sub(src, x, y, w, h, dst)
|
||||
#define image_sub(...) image_sub1(__VA_ARGS__, NULL)
|
||||
|
||||
/* image_at(): Build a reference to a position within a sub-image */
|
||||
#define image_at(img, x, y) image_sub(img, x, y, -1, -1)
|
||||
|
||||
//---
|
||||
// Geometric image transforms
|
||||
//
|
||||
// All geometric transforms render to position (0,0) of the target image and
|
||||
// fail if the target image is not large enough to hold the transformed result
|
||||
// (unlike the rendering functions which render only the visible portion).
|
||||
//
|
||||
// To render at position (x,y) of the target image, use img_at(). For instance:
|
||||
// image_hflip(src, image_at(dst, x, y));
|
||||
//
|
||||
// Each transform function has an [_alloc] variant which does the same
|
||||
// transform but allocates the target image on the fly and returns it. Remember
|
||||
// that allocation can fail, so you need to check whether the returned image is
|
||||
// valid.
|
||||
//
|
||||
// (You can still pass invalid images to transform functions. The invalid image
|
||||
// will be ignored or returned unchanged, so you can chain calls and check for
|
||||
// validity at the end of the chain.)
|
||||
//
|
||||
// Some functions support in-place transforms. This means they can be called
|
||||
// with the source as destination, and will transform the image without needing
|
||||
// new memory. For instance, image_hflip(src, src) flips in-place and replaces
|
||||
// src with a flipped version of itself.
|
||||
//
|
||||
// (However, it is not possible to transform in-place if the source and
|
||||
// destination intersect in non-trivial ways. The result will be incorrect.)
|
||||
//
|
||||
// When transforming to a new image, transparent pixels are ignored, so if the
|
||||
// destination already has some data, it will not be erased automatically. Use
|
||||
// image_clear() beforehand to achieve that effect. This allows alpha blending
|
||||
// while transforming, which is especially useful on the VRAM.
|
||||
//---
|
||||
|
||||
/* image_hflip(): Flip horizontally
|
||||
Formats: RGB16, P8
|
||||
Size requirement: destination at least as large as source (no clipping)
|
||||
Supports in-place: Yes */
|
||||
void image_hflip(image_t const *src, image_t *dst, bool copy_alpha);
|
||||
image_t *image_hflip_alloc(image_t const *src);
|
||||
|
||||
/* image_vflip(): Flip vertically
|
||||
Formats: RGB16, P8
|
||||
Size requirement: destination at least as large as source (no clipping)
|
||||
Supports in-place: Yes */
|
||||
void image_vflip(image_t const *src, image_t *dst, bool copy_alpha);
|
||||
image_t *image_vflip_alloc(image_t const *src);
|
||||
|
||||
/* image_linear(): Linear transformation
|
||||
|
||||
This function implements a generic linear transformation. This is a powerful
|
||||
function that can perform any combination of rotation, mirroring and scaling
|
||||
with nearest-neighbor sampling.
|
||||
|
||||
The [image_linear_map] structure defines the settings for the transform.
|
||||
Users familiar with linear algebra might want to use it directly, but they
|
||||
are most conveniently generated with the rotation and scaling functions
|
||||
listed below.
|
||||
|
||||
Note: Currently the structure for the transform is modified by the
|
||||
operation and cannot be reused.
|
||||
|
||||
The image_linear_alloc() variant allocates a new image in addition to
|
||||
performing the transform. The image is created with size (map->dst_w,
|
||||
map->dst_h) which is always a reasonable default. If a target image of
|
||||
smaller size is supplied to image_linear(), clipping is performed; only the
|
||||
top-left corner of the full output is actually rendered.
|
||||
|
||||
Formats: RGB16, P8
|
||||
Size requirement: none (clipping is performed)
|
||||
Supports in-place: No */
|
||||
|
||||
struct image_linear_map {
|
||||
/* Dimensions of the source and destination */
|
||||
int src_w, src_h, dst_w, dst_h;
|
||||
/* Input and output stride in bytes */
|
||||
int src_stride, dst_stride;
|
||||
|
||||
/* The following parameters define the linear transformation as a mapping
|
||||
from coordinates in the destination image (x and y) into coordinates in
|
||||
the source image (u and v).
|
||||
- (u, v) indicate where the top-left corner of the destination lands in
|
||||
the source image.
|
||||
- (dx_u, dx_v) indicate the source-image movement for each movement of
|
||||
x += 1 in the destination.
|
||||
- (dy_u, dy_v) indicate the source-image movement for each movement of
|
||||
y += 1 in the destination.
|
||||
All of these values are specified as 16:16 fixed-point, ie. they encode
|
||||
decimal values by multiplying them by 65536. */
|
||||
int u, v, dx_u, dx_v, dy_u, dy_v;
|
||||
};
|
||||
|
||||
void image_linear(image_t const *src, image_t *dst,
|
||||
struct image_linear_map *map);
|
||||
image_t *image_linear_alloc(image_t const *src,
|
||||
struct image_linear_map *map);
|
||||
|
||||
/* image_scale(): Upscale or downscale an image
|
||||
|
||||
This function generates a linear map to be used in image_linear() to scale
|
||||
the input image. The scaling factor gamma can be specified independently for
|
||||
the x and y dimensions. It is expressed as 16:16 fixed-point; you can set
|
||||
any decimal value multiplied by 65536, for instance 1.5*65536 to increase
|
||||
the width and height by 50%. */
|
||||
void image_scale(image_t const *src, int gamma_x, int gamma_y,
|
||||
struct image_linear_map *map);
|
||||
|
||||
/* image_rotate(): Rotate an image around its center
|
||||
|
||||
This function generates a linear map to be used in image_linear() to perform
|
||||
a rotation around the center of an image. If [resize=true], the target is
|
||||
enlarged to make sure all the rotated pixels can be represented. This can
|
||||
increase the final surface by a factor of up to 2. If the original image
|
||||
doesn't extend to its corners, it is recommended to leave [resize=false] as
|
||||
it noticeably affects performance. */
|
||||
void image_rotate(image_t const *src, float angle, bool resize,
|
||||
struct image_linear_map *map);
|
||||
|
||||
/* image_rotate_around(): Rotate an image around any point
|
||||
|
||||
This function generalizes image_rotate() by allowing rotations around any
|
||||
center, even a point not within the image. The center is specified through
|
||||
two coordinates (*center_x, *center_y). If the center is near the side of
|
||||
the image, a normal rotation would move most of the pixels out of frame;
|
||||
this function moves the frame to make sure the whole image remains visible.
|
||||
*center_x and *center_y are updated to indicate the position of the center
|
||||
of rotation within the new frame (the target image). */
|
||||
void image_rotate_around(image_t const *src, float angle, bool resize,
|
||||
int *center_x, int *center_y, struct image_linear_map *map);
|
||||
|
||||
/* image_rotate_around_scale(): Rotate an image around any point and scale it
|
||||
|
||||
This function generalizes image_rotate_around() by adding a scaling factor
|
||||
to the transformation. The scaling factor gamma is expressed as 16:16
|
||||
fixed-point. If [resize=true] the image is further extended to make sure no
|
||||
parts are cut out, as in other rotation functions. */
|
||||
void image_rotate_around_scale(
|
||||
image_t const *src, float angle, int gamma,
|
||||
bool resize, int *center_x, int *center_y,
|
||||
struct image_linear_map *map);
|
||||
|
||||
//---
|
||||
// Color transforms
|
||||
//---
|
||||
|
||||
/* TODO: Color transforms */
|
||||
|
||||
//---
|
||||
// Image rendering functions
|
||||
//
|
||||
// The following functions extend dimage() and dsubimage(). The [effects]
|
||||
// parameter takes a combination of IMAGE_* flags and effects, limited to the
|
||||
// combinations previously described, with additional arguments depending on
|
||||
// the color effect being applied.
|
||||
//
|
||||
// dimage_effect(x, y, img, effects, ...)
|
||||
// dsubimage_effect(x, y, img, left, top, w, h, effects, ...)
|
||||
//
|
||||
// However if you use these super-generic functions you will link the code for
|
||||
// all effects and all formats into your add-in, which takes a fair amount of
|
||||
// space. If that's a problem, you can use the more specific functions below:
|
||||
//
|
||||
// * dimage_<FORMAT>_<EFFECT>() for one particular format (rgb16, p8, p4) along
|
||||
// with one particular color effect (clearbg, swapcolor, addbg, dye).
|
||||
// * dimage_<FORMAT>() is like the above when no color effect is applied.
|
||||
//
|
||||
// All of them support the HFLIP and VFLIP flags. For effect-specific functions
|
||||
// the corresponding effect flag can be omitted (fi. IMAGE_CLEARBG is implicit
|
||||
// when using dimage_p8_clearbg()).
|
||||
//---
|
||||
|
||||
/* dimage_effect(): Generalized dimage() supporting dynamic effects */
|
||||
#define dimage_effect(x, y, img, eff, ...) \
|
||||
dsubimage_effect(x, y, img, 0, 0, (img)->width, (img)->height, eff, \
|
||||
##__VA_ARGS__)
|
||||
/* dsubimage_effect(): Generalized dsubimage() supporting dynamic effects */
|
||||
void dsubimage_effect(int x, int y, image_t const *img,
|
||||
int left, int top, int w, int h, int effects, ...);
|
||||
|
||||
/* Specific versions for each format */
|
||||
#define DIMAGE_SIG1(NAME, ...) \
|
||||
void dimage_ ## NAME(int x, int y, image_t const *img,##__VA_ARGS__); \
|
||||
void dsubimage_ ## NAME(int x, int y, image_t const *img, \
|
||||
int left, int top, int w, int h, ##__VA_ARGS__);
|
||||
#define DIMAGE_SIG(NAME, ...) \
|
||||
DIMAGE_SIG1(rgb16 ## NAME, ##__VA_ARGS__) \
|
||||
DIMAGE_SIG1(p8 ## NAME, ##__VA_ARGS__) \
|
||||
DIMAGE_SIG1(p4 ## NAME, ##__VA_ARGS__)
|
||||
|
||||
/* d[sub]image_{rgb16,p8,p4}_effect(..., effects, <extra arguments>) */
|
||||
DIMAGE_SIG(_effect, int effects, ...)
|
||||
/* d[sub]image_{rgb16,p8,p4}(..., effects) (no color effect, like dimage()) */
|
||||
DIMAGE_SIG(, int effects)
|
||||
/* d[sub]image_{rgb16,p8,p4}_clearbg(..., effects, bg_color_or_index) */
|
||||
DIMAGE_SIG(_clearbg, int effects, int bg_color_or_index)
|
||||
/* d[sub]image_{rgb16,p8,p4}_swapcolor(..., effects, source, replacement) */
|
||||
DIMAGE_SIG(_swapcolor, int effects, int source, int replacement)
|
||||
/* d[sub]image_{rgb16,p8,p4}_addbg(..., effects, bg_color) */
|
||||
DIMAGE_SIG(_addbg, int effects, int bg_color)
|
||||
/* d[sub]image_{rgb16,p8,p4}_dye(..., effects, dye_color) */
|
||||
DIMAGE_SIG(_dye, int effects, int dye_color)
|
||||
|
||||
/* d[sub]image_p4_clearbg_alt(..., effects, bg_index)
|
||||
This is functionally identical to CLEARBG, but it uses an alternative
|
||||
rendering method that is faster for larger images with wide transparent
|
||||
areas. You can swap it with the normal CLEARBG freely. */
|
||||
DIMAGE_SIG1(p4_clearbg_alt, int effects, int bg_index)
|
||||
|
||||
#define dimage_rgb16_effect(x, y, img, eff, ...) \
|
||||
dsubimage_rgb16_effect(x, y, img, 0, 0, (img)->width, (img)->height, \
|
||||
eff, ##__VA_ARGS__)
|
||||
#define dimage_p8_effect(x, y, img, eff, ...) \
|
||||
dsubimage_p8_effect(x, y, img, 0, 0, (img)->width, (img)->height, \
|
||||
eff, ##__VA_ARGS__)
|
||||
#define dimage_p4_effect(x, y, img, eff, ...) \
|
||||
dsubimage_p4_effect(x, y, img, 0, 0, (img)->width, (img)->height, \
|
||||
eff, ##__VA_ARGS__)
|
||||
|
||||
#undef DIMAGE_SIG
|
||||
#undef DIMAGE_SIG1
|
||||
|
||||
//---
|
||||
// Clipping utilities
|
||||
//---
|
||||
|
||||
/* Double box specifying both a source and target area */
|
||||
struct gint_image_box
|
||||
{
|
||||
/* Target location of top-left corner */
|
||||
int x, y;
|
||||
/* Width and height of rendered sub-image */
|
||||
int w, h;
|
||||
/* Source bounding box (low included, high excluded) */
|
||||
int left, top;
|
||||
};
|
||||
|
||||
/* Clip the provided box against the input. If, after clipping, the box no
|
||||
longer intersects the output window, returns false. Otherwise, returns
|
||||
true. */
|
||||
bool gint_image_clip_input(image_t const *img, struct gint_image_box *box,
|
||||
struct dwindow const *window);
|
||||
|
||||
/* Clip the provided box against the output. */
|
||||
void gint_image_clip_output(struct gint_image_box *b,
|
||||
struct dwindow const *window);
|
||||
|
||||
//---
|
||||
// Internal image rendering routines
|
||||
//
|
||||
// The following functions (or non-functions) are implemented in assembler and
|
||||
// make up the internal interface of the image renderer. If you just want to
|
||||
// display images, use dimage() and variations; these are only useful if you
|
||||
// have a different rendering system and wish to use image rendering with
|
||||
// dynamic effects in it.
|
||||
//---
|
||||
|
||||
/* Renderer command. This structure includes most of the information used by
|
||||
the image renderer to perform blits. Some of the information on the target
|
||||
is also passed as direct arguments, which is more convenient and slightly
|
||||
faster.
|
||||
|
||||
Most of the values here can be set with gint_image_mkcmd(). The last two
|
||||
members, along with the return values of the gint_image_FORMAT_loop()
|
||||
functions, are used to update the command if one needs to draw *parts* of
|
||||
the image and resume the rendering later. This is used in Azur. */
|
||||
struct gint_image_cmd
|
||||
{
|
||||
/* Shader ID. This is used in Azur, and ignored in gint */
|
||||
uint8_t shader_id;
|
||||
/* Dynamic effects not already dispatched by renderer
|
||||
Bit 0: VFLIP
|
||||
Bit 1: HFLIP */
|
||||
uint8_t effect;
|
||||
|
||||
/* Number of pixels to render per line. For formats that force either x
|
||||
or width alignment (most of them), this is already adjusted to a
|
||||
suitable multiple (usually a multiple of 2). */
|
||||
int16_t columns;
|
||||
|
||||
/* Stride of the input image (number of pixels between each row), in
|
||||
pixels, without subtracting the number of columns */
|
||||
int16_t input_stride;
|
||||
|
||||
/* Number of lines in the command. This can be adjusted freely, and is
|
||||
particularly useful in Azur for fragmented rendering. */
|
||||
uint8_t lines;
|
||||
|
||||
/* [Any effect]: Offset of first edge */
|
||||
int8_t edge_1;
|
||||
|
||||
/* Core loop; this is an internal label of the renderer */
|
||||
void const *loop;
|
||||
/* Output pixel array, offset by target x/y */
|
||||
void const *output;
|
||||
/* Input pixel array, offset by source x/y. For formats that force x
|
||||
alignment, this is already adjusted. */
|
||||
void const *input;
|
||||
/* Palette, when applicable */
|
||||
uint16_t const *palette;
|
||||
|
||||
/* [Any effect]: Offset of right edge */
|
||||
int16_t edge_2;
|
||||
/* [CLEARBG, SWAPCOLOR]: Source color */
|
||||
uint16_t color_1;
|
||||
/* [SWAPCOLOR]: Destination color */
|
||||
uint16_t color_2;
|
||||
|
||||
/* Remaining height (for updates between fragments) */
|
||||
int16_t height;
|
||||
/* Local x position (for updates between fragments) */
|
||||
int16_t x;
|
||||
};
|
||||
|
||||
/* gint_image_mkcmd(): Prepare a rendering command with dynamic effects
|
||||
|
||||
This function crafts an image renderer command. It loads all the settings
|
||||
except for effect-dependent parameters: the [.loop] label, the color section
|
||||
of [.effect], and color effect settings. See the effect-specific functions
|
||||
to see how they are defined.
|
||||
|
||||
The benefit of this approach is that the rendering code does not need to be
|
||||
linked in unless an effect is actually used, which avoids blowing up the
|
||||
size of the add-in as the number of support dynamic effects increases.
|
||||
|
||||
@box Requested on-screen box (will be clipped depending on effects)
|
||||
@img Source image
|
||||
@effects Set of dynamic effects to be applied, as an [IMAGE_*] bitmask
|
||||
@left_edge Whether to force 2-alignment on the input (box->left)
|
||||
@right_edge Whether to force 2-alignment on the width
|
||||
@cmd Command to be filled
|
||||
@window Rendering window (usually {0, 0, DWIDTH, DHEIGHT})
|
||||
|
||||
Returns false if there is nothing to render because of clipping (in which
|
||||
case [cmd] is unchanged), true otherwise. [*box] is also updated to reflect
|
||||
the final box after clipping but not accounting for edges. */
|
||||
bool gint_image_mkcmd(struct gint_image_box *box, image_t const *img,
|
||||
int effects, bool left_edge, bool right_edge,
|
||||
struct gint_image_cmd *cmd, struct dwindow const *window);
|
||||
|
||||
/* Entry point of the renderers. These functions can be called normally as long
|
||||
as you can build the commands (eg. by using gint_image_mkcmd() then filling
|
||||
the effect-specific information). */
|
||||
void *gint_image_rgb16_loop (int output_width, struct gint_image_cmd *cmd);
|
||||
void *gint_image_p8_loop (int output_width, struct gint_image_cmd *cmd);
|
||||
void *gint_image_p4_loop (int output_width, struct gint_image_cmd *cmd);
|
||||
|
||||
/* Renderer fragments. The following can absolutely not be called from C code
|
||||
as they aren't full functions (and this isn't their prototype). These are
|
||||
continuations to be specified in the [.loop] field of a command before using
|
||||
one of the functions above. */
|
||||
|
||||
void gint_image_rgb16_normal(void);
|
||||
void gint_image_rgb16_clearbg(void);
|
||||
void gint_image_rgb16_swapcolor(void);
|
||||
void gint_image_rgb16_dye(void);
|
||||
|
||||
void gint_image_p8_normal(void);
|
||||
void gint_image_p8_clearbg(void);
|
||||
void gint_image_p8_swapcolor(void);
|
||||
void gint_image_p8_dye(void);
|
||||
|
||||
void gint_image_p4_normal(void);
|
||||
void gint_image_p4_clearbg(void);
|
||||
void gint_image_p4_clearbg_alt(void);
|
||||
void gint_image_p4_swapcolor(void);
|
||||
void gint_image_p4_dye(void);
|
||||
|
||||
//---
|
||||
// Image library utilities
|
||||
//
|
||||
// The following functions and macros are mostly internal utilities; they are
|
||||
// exposed here in case user applications want to extend the set of image
|
||||
// transforms with custom additions.
|
||||
//---
|
||||
|
||||
/* image_target(): Check if an image can be used as target for a transform
|
||||
|
||||
This function is used to quickly check whether a transform from [src] to
|
||||
[dst] is possible. It requires image_valid(src) and image_valid(dst), plus
|
||||
any optional constraints specified as variadic arguments. These constraints
|
||||
can be:
|
||||
|
||||
* NOT_P4: fails if [dst] is P4.
|
||||
* DATA_RW: fails if [dst] is not data-writable.
|
||||
* PALETTE_RW: fails if [dst] is not palette-writable.
|
||||
* SAME_SIZE: fails if [dst] is not at least as large as [src].
|
||||
|
||||
For example, in image_hflip(), we write:
|
||||
if(!image_target(src, dst, NOT_P4, DATA_RW, SAME_SIZE)) return; */
|
||||
|
||||
enum {
|
||||
IMAGE_TARGET_NONE,
|
||||
IMAGE_TARGET_NOT_P4,
|
||||
IMAGE_TARGET_DATA_RW,
|
||||
IMAGE_TARGET_PALETTE_RW,
|
||||
IMAGE_TARGET_SAME_SIZE,
|
||||
IMAGE_TARGET_SAME_FORMAT,
|
||||
IMAGE_TARGET_SAME_DEPTH,
|
||||
};
|
||||
bool image_target(image_t const *src, image_t *dst, ...);
|
||||
|
||||
#define image_target(src, dst, ...) \
|
||||
image_target(src, dst, image_target_arg1(__VA_ARGS__ __VA_OPT__(,) NONE))
|
||||
#define image_target_arg1(c, ...) \
|
||||
IMAGE_TARGET_ ## c __VA_OPT__(, image_target_arg2(__VA_ARGS__))
|
||||
#define image_target_arg2(c, ...) \
|
||||
IMAGE_TARGET_ ## c __VA_OPT__(, image_target_arg3(__VA_ARGS__))
|
||||
#define image_target_arg3(c, ...) \
|
||||
IMAGE_TARGET_ ## c __VA_OPT__(, image_target_arg4(__VA_ARGS__))
|
||||
#define image_target_arg4(c, ...) \
|
||||
IMAGE_TARGET_ ## c __VA_OPT__(, image_target_arg5(__VA_ARGS__))
|
||||
#define image_target_arg5(c, ...) \
|
||||
IMAGE_TARGET_ ## c __VA_OPT__(, image_target_arg6(__VA_ARGS__))
|
||||
#define image_target_arg6(c, ...) \
|
||||
IMAGE_TARGET_ ## c __VA_OPT__(, image_target_too_many_args(__VA_ARGS__))
|
||||
|
||||
/* image_alpha_2(): Conditional alpha */
|
||||
#define image_alpha_2(fmt, copy_alpha) \
|
||||
((copy_alpha) ? 0x10000 : image_alpha(fmt))
|
||||
|
||||
#endif /* GINT_RENDER_RGB */
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* GINT_IMAGE */
|
|
@ -0,0 +1,21 @@
|
|||
MIT License
|
||||
|
||||
Copyright (c) 2013-2025 Niels Lohmann
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
Loading…
Reference in New Issue