CONFIG is constant, explicitly marqued it

This commit is contained in:
Ulysse Cura 2025-09-11 13:46:20 +02:00
parent 860805cbef
commit 6ad6e2994c
1 changed files with 135 additions and 135 deletions

View File

@ -1,135 +1,135 @@
#include "include/gyro.h"
#include <stdint.h>
#include "include/i2c_master.h"
#include "include/robot.h"
#include <stdio.h>
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\
* Thank you Keuronde ! *
* https://git.poivron-robotique.fr/Keuronde/Holonome_2024/src/branch/Demo_2025_03/gyro_L3GD20H.c *
\* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
#define SAMPLE_MIN_ELAPSED_TIME 2 // ms
#define DPS_PER_DIGIT 0.00875f
int init_gyro(void)
{
// Verify gyro initialisation
uint8_t data;
i2c_master_read_reg(I2C_GYRO_ADDRESS, 0x0F, &data, 1);
if(data != 0xd7) return -1;
// Configure gyro
const uint8_t CTRL1_REG = 0x20;
const uint8_t CTRL1_CONFIG = 0b11101111; // DR : 11 // BW : 10 // PD : 1 // Zen : 1 // Xen : 1 // Yen : 1 //
uint8_t config[] = {CTRL1_REG, CTRL1_CONFIG};
uint8_t config_verification;
i2c_master_write(I2C_GYRO_ADDRESS, config, 2);
i2c_master_read_reg(I2C_GYRO_ADDRESS, CTRL1_REG, &config_verification, 1);
if(config_verification != config[1]) return -1;
robot.gyro_data.x_angle = 0.0f;
robot.gyro_data.y_angle = 0.0f;
robot.gyro_data.z_angle = 0.0f;
sleep_ms(1000);
return 0;
}
static inline void __attribute__((always_inline)) gyro_read(int16_t *x, int16_t *y, int16_t *z)
{
const uint8_t X_OUT_L_REG = 0x28;
uint8_t data[6];
i2c_master_read_reg(I2C_GYRO_ADDRESS, X_OUT_L_REG | 0x80, data, 6); // 0x80 for auto incrementing
*x = (int16_t)((data[1] << 8) | data[0]);
*y = (int16_t)((data[3] << 8) | data[2]);
*z = (int16_t)((data[5] << 8) | data[4]);
}
void gyro_calibrate(void)
{
const uint nb_samples = 1000;
int16_t x, y, z;
int32_t x_sum = 0, y_sum = 0, z_sum = 0;
for(uint i = 0; i < nb_samples; i++)
{
gyro_read(&x, &y, &z);
x_sum += x;
y_sum += y;
z_sum += z;
sleep_ms(SAMPLE_MIN_ELAPSED_TIME);
//printf(">cal_x:%d\n", x);
//printf(">cal_y:%d\n", y);
//printf(">cal_z:%d\n", z);
}
robot.gyro_data.x_offset = (float)x_sum / (float)nb_samples * DPS_PER_DIGIT;
robot.gyro_data.y_offset = (float)y_sum / (float)nb_samples * DPS_PER_DIGIT;
robot.gyro_data.z_offset = (float)z_sum / (float)nb_samples * DPS_PER_DIGIT;
//printf("\nx_cal:%.5f\n", robot.gyro_data.x_offset);
//printf("\ny_cal:%.5f\n", robot.gyro_data.y_offset);
//printf("\nz_cal:%.5f\n", robot.gyro_data.z_offset);
}
static inline void __attribute__((always_inline)) gyro_get_dps(double* x_dps, double* y_dps, double* z_dps)
{
int16_t x, y, z;
gyro_read(&x, &y, &z);
*x_dps = x * DPS_PER_DIGIT;
*y_dps = y * DPS_PER_DIGIT;
*z_dps = z * DPS_PER_DIGIT;
//printf(">x_dps:%f\n", *x_dps);
//printf(">y_dps:%f\n", *y_dps);
//printf(">z_dps:%f\n", *z_dps);
}
void gyro_update(void)
{
static double elapsed_since_sample_ms = 10.0;
elapsed_since_sample_ms += robot.delta_time_ms;
if(elapsed_since_sample_ms >= SAMPLE_MIN_ELAPSED_TIME)
{
double x_dps, y_dps, z_dps;
gyro_get_dps(&x_dps, &y_dps, &z_dps);
x_dps -= robot.gyro_data.x_offset;
y_dps -= robot.gyro_data.y_offset;
z_dps -= robot.gyro_data.z_offset;
robot.gyro_data.x_angle += x_dps * elapsed_since_sample_ms / 1000.0f;
robot.gyro_data.y_angle += y_dps * elapsed_since_sample_ms / 1000.0f;
robot.gyro_data.z_angle += z_dps * elapsed_since_sample_ms / 1000.0f;
while(robot.gyro_data.x_angle > 180) robot.gyro_data.x_angle -= 360;
while(robot.gyro_data.x_angle < -180) robot.gyro_data.x_angle += 360;
while(robot.gyro_data.y_angle > 180) robot.gyro_data.y_angle -= 360;
while(robot.gyro_data.y_angle < -180) robot.gyro_data.y_angle += 360;
while(robot.gyro_data.z_angle > 180) robot.gyro_data.z_angle -= 360;
while(robot.gyro_data.z_angle < -180) robot.gyro_data.z_angle += 360;
//printf(">gyro_x_angle:%f\n", robot.gyro_data.x_angle);
//printf(">gyro_y_angle:%f\n", robot.gyro_data.y_angle);
//printf(">gyro_z_angle:%f\n", robot.gyro_data.z_angle);
elapsed_since_sample_ms = 0.0;
}
}
#include "include/gyro.h"
#include <stdint.h>
#include "include/i2c_master.h"
#include "include/robot.h"
#include <stdio.h>
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\
* Thank you Keuronde ! *
* https://git.poivron-robotique.fr/Keuronde/Holonome_2024/src/branch/Demo_2025_03/gyro_L3GD20H.c *
\* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
#define SAMPLE_MIN_ELAPSED_TIME 2 // ms
#define DPS_PER_DIGIT 0.00875f
int init_gyro(void)
{
// Verify gyro initialisation
uint8_t data;
i2c_master_read_reg(I2C_GYRO_ADDRESS, 0x0F, &data, 1);
if(data != 0xd7) return -1;
// Configure gyro
const uint8_t CTRL1_REG = 0x20;
const uint8_t CTRL1_CONFIG = 0b11101111; // DR : 11 // BW : 10 // PD : 1 // Zen : 1 // Xen : 1 // Yen : 1 //
const uint8_t CONFIG[] = {CTRL1_REG, CTRL1_CONFIG};
i2c_master_write(I2C_GYRO_ADDRESS, CONFIG, 2);
uint8_t config_verification;
i2c_master_read_reg(I2C_GYRO_ADDRESS, CTRL1_REG, &config_verification, 1);
if(config_verification != config[1]) return -1;
robot.gyro_data.x_angle = 0.0f;
robot.gyro_data.y_angle = 0.0f;
robot.gyro_data.z_angle = 0.0f;
sleep_ms(1000);
return 0;
}
static inline void __attribute__((always_inline)) gyro_read(int16_t *x, int16_t *y, int16_t *z)
{
const uint8_t X_OUT_L_REG = 0x28;
uint8_t data[6];
i2c_master_read_reg(I2C_GYRO_ADDRESS, X_OUT_L_REG | 0x80, data, 6); // 0x80 for auto incrementing
*x = (int16_t)((data[1] << 8) | data[0]);
*y = (int16_t)((data[3] << 8) | data[2]);
*z = (int16_t)((data[5] << 8) | data[4]);
}
void gyro_calibrate(void)
{
const uint nb_samples = 1000;
int16_t x, y, z;
int32_t x_sum = 0, y_sum = 0, z_sum = 0;
for(uint i = 0; i < nb_samples; i++)
{
gyro_read(&x, &y, &z);
x_sum += x;
y_sum += y;
z_sum += z;
sleep_ms(SAMPLE_MIN_ELAPSED_TIME);
//printf(">cal_x:%d\n", x);
//printf(">cal_y:%d\n", y);
//printf(">cal_z:%d\n", z);
}
robot.gyro_data.x_offset = (float)x_sum / (float)nb_samples * DPS_PER_DIGIT;
robot.gyro_data.y_offset = (float)y_sum / (float)nb_samples * DPS_PER_DIGIT;
robot.gyro_data.z_offset = (float)z_sum / (float)nb_samples * DPS_PER_DIGIT;
//printf("\nx_cal:%.5f\n", robot.gyro_data.x_offset);
//printf("\ny_cal:%.5f\n", robot.gyro_data.y_offset);
//printf("\nz_cal:%.5f\n", robot.gyro_data.z_offset);
}
static inline void __attribute__((always_inline)) gyro_get_dps(double* x_dps, double* y_dps, double* z_dps)
{
int16_t x, y, z;
gyro_read(&x, &y, &z);
*x_dps = x * DPS_PER_DIGIT;
*y_dps = y * DPS_PER_DIGIT;
*z_dps = z * DPS_PER_DIGIT;
//printf(">x_dps:%f\n", *x_dps);
//printf(">y_dps:%f\n", *y_dps);
//printf(">z_dps:%f\n", *z_dps);
}
void gyro_update(void)
{
static double elapsed_since_sample_ms = 10.0;
elapsed_since_sample_ms += robot.delta_time_ms;
if(elapsed_since_sample_ms >= SAMPLE_MIN_ELAPSED_TIME)
{
double x_dps, y_dps, z_dps;
gyro_get_dps(&x_dps, &y_dps, &z_dps);
x_dps -= robot.gyro_data.x_offset;
y_dps -= robot.gyro_data.y_offset;
z_dps -= robot.gyro_data.z_offset;
robot.gyro_data.x_angle += x_dps * elapsed_since_sample_ms / 1000.0f;
robot.gyro_data.y_angle += y_dps * elapsed_since_sample_ms / 1000.0f;
robot.gyro_data.z_angle += z_dps * elapsed_since_sample_ms / 1000.0f;
while(robot.gyro_data.x_angle > 180) robot.gyro_data.x_angle -= 360;
while(robot.gyro_data.x_angle < -180) robot.gyro_data.x_angle += 360;
while(robot.gyro_data.y_angle > 180) robot.gyro_data.y_angle -= 360;
while(robot.gyro_data.y_angle < -180) robot.gyro_data.y_angle += 360;
while(robot.gyro_data.z_angle > 180) robot.gyro_data.z_angle -= 360;
while(robot.gyro_data.z_angle < -180) robot.gyro_data.z_angle += 360;
//printf(">gyro_x_angle:%f\n", robot.gyro_data.x_angle);
//printf(">gyro_y_angle:%f\n", robot.gyro_data.y_angle);
//printf(">gyro_z_angle:%f\n", robot.gyro_data.z_angle);
elapsed_since_sample_ms = 0.0;
}
}